
Avraham	“Abe”	Bernstein	|	CV

Email:	Avraham	DOT	Bernstein	PLUS	cv	AT	gmail	DOT	com	
Tel/Whatsapp:	+972.54.641-0955	
City:	Jerusalem	9727433	ISRAEL	
Time	Zone:	UTC	+02:00/+03:00	(winter/summer)	
Shabbat	Observant:	Not	accessible	electronically	nor	engaging	in	any	business	activities	from	Fri.	evening	(Jm.
time)	beginning	1	hour	before	sunset	until	Sat.	night	1	hour	after	sunset,	nor	on	Jewish	holidays	
WWW:	https://www.avrahambernstein.com	
Linkedin:	https://www.linkedin.com/in/avrahambernstein/	
Last	Update:	2025-02-08

1.	Summary

I	am	a	senior	software	architect	with	over	40+	years	of	INNOVATION	in:

compiler	construction,	and	domain	specific	language	(DSL)	design
design	of	command	line	interfaces	(CLIs)	and	APIs

for	example	that	are	extremely	useful	for	scripting	and	testing	GUIs,	and	for	communicating	with	AI
agents

automated	source	code	refactoring	of	C-17,	C++-2014,	C#-ECMA334,	and	Java-SE8	S/W
via	the	AST-XML	conversion	utilities	srcML	and	Beautiful	Soup

unique	source	code	obfuscation	techniques	that	greatly	reduce	the	reverse	engineering	"attack	surface"	of
linux	apps	(both	workstation	and	embedded)
simplify	the	design	of	source	code	with	the	assistance	of	various	macro	preprocessors	and	template	engines
algorithm	design
multiple	patents	and	inventions	in	many	different	application	domains

I	worked	at	an	expert	level	in	many	industries	including:

cybersecurity
automotive
internet	TV
accessibility
bioinformatics

I	am	an	expert	generalist	and	autodidact	polymath	who	thrives	on	technically	challenging	projects.	I	worked
with	CTO	groups	to	solve	problems	that	initially	had	AMBIGUOUS	problem	specifications	in	order	to	build
prototypes	and	minimum	viable	products	(MVPs).	I	was	able	to	refine	the	problems	in	order	to	build
commercially	useful	and	testable	solutions.	I	prefer	to	work	with	and	to	mentor	small	teams.

On	account	of	my	age,	I	find	that	working	as	a	consultant-contractor	is	the	best	fit	for	most	employers.	And	for
HR	executives,	here	is	a	synopsis	of	a	financial	study	from	Stanford	Univ.	on	the	benefits	of	hiring	older
employees.

Core	Skills	&	Tools

Languages:	C,	Python,	Tcl,	Jinja2,	Pyexpander,	Bash	&	Posix	CLI	Commands,	HTML,	XML,	Markdown,	WASM

Technologies:	srcML	(acquired	commercial	license),	Beautiful	Soup,	Linux,	ELF,	Misra	C,	GCC,	Clang,	Zydis,
Pandoc,	Obsidian,	YAML	&	PKL

Domains:	Compiler	Design,	Domain	Specific	Languages	(DSL),	Code	Refactoring	and	Obfuscation	(=	anti-
reverse	engineering),	Cybersecurity,	Reverse	Engineering,	Embedded	Systems,	Accessibility,	Automotive
Software,	Factory	Automation,	Bioinformatics,	Network	Protocols

https://www.timeanddate.com/worldclock/israel/jerusalem
https://www.chabad.org/calendar/candlelighting_cdo/locationId/247/locationType/1/jewish/Candle-Lighting.htm
https://www.hebcal.com/holidays/2026?i=on
https://www.avrahambernstein.com/
https://www.linkedin.com/in/avrahambernstein/
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://www.srcml.org/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://simplicable.com/new/expert-generalist
https://en.wikipedia.org/wiki/Autodidacticism
https://en.wikipedia.org/wiki/Polymath
https://longevity.stanford.edu/why-more-companies-are-recognizing-the-benefits-of-keeping-older-employees/
https://en.wikipedia.org/wiki/Jinja_(template_engine)
https://pyexpander.sourceforge.io/
https://en.wikipedia.org/wiki/List_of_POSIX_commands
https://webassembly.org/
https://www.srcml.org/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/MISRA_C
https://zydis.re/
https://www.pandoc.org/
https://obsidian-html.github.io/index.html
https://pkl-lang.org/
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Code_refactoring
https://en.wikipedia.org/wiki/Obfuscation_(software)


2.	Inventions	(Reverse	Chronological	Order)

1.	 Showed	how	srcML	combined	with	Python	Beautiful	Soup	could	automatically	refactor	"C"	source	code	for
greatly	improving	the	efficiency	of	automotive	software	updates,	and	for	cybersecurity	obfuscation.

2.	 Invented	Linux	cybersecurity	techniques,	especially	to	minimize	the	attack	surface	of	.so	(DSO)	files	that
supply	no	formal	exports,	efficiently	shroud	system	calls	and	strings	and	constants	and	randomize	the	stack,
and	thus	are	extremely	difficult	to	reverse	engineer.	See	short	technical	description.

3.	 Patented	FLASH	techniques	for	implementing	S/W	updates	on	small	FLASH	devices,	and	small	RAM	for	the
automobile	industry	which	are	plagued	with	minimal	FLASH	and	RAM	in	order	to	reduce	the	materials	cost
of	the	millions	of	vehicles	that	they	produce.

4.	 Invented	a	technique	for	dynamically	loading	a	large	static	FLASH	database	into	an	embedded	system	that
could	be	larger	than	RAM	that	does	not	violate	any	Misra	C	restrictions,	with	the	help	of	preprocessing	tools
such	as	Jinja2	or	Pyexpander.

5.	 Invented	a	simple	technique	to	obfuscate	photographs	using	GIMP	filters	while	remaining	easily
recognizable	by	a	young	child,	but	not	recognizable	by	photographic	database	software.

6.	 Invented	highly	accurate	fuzzy	logic	classifier	used	to	discover	rooted	Android	devices.

7.	 Showed	how	trivial	Virtual	Machine	(VM)	attacks	could	disrupt	Digital	Rights	Management	(DRM)	protection,
and	how	the	QEMU	VM	could	disrupt	the	cryptographic	nonce	mechanism	which	allowed	subscriber	IDs	to
be	shared	by	a	confederacy	of	pirates.

8.	 Invented	a	generic	font	modification	technique	in	order	to	make	them	understandable	by	dyslexics.

9.	 Invented	a	technique	that	enabled	the	blind	to	"see"	and	navigate	digital	maps	and	to	explore	mathematical
functions	on	standard	PCs	and	smartphones	with	a	sound	card	and	the	addition	of	a	consumer	grade
graphics	tablet	via	the	use	of	custom	S/W	that	runs	on	a	standard	web	browser	with	SVG	support.

10.	 Invented	bioinformatic	PCR	algorithms	that	(1)	can	accurately	detect	the	"Ct"	of	an	assay	with	high	levels	of
inhibition	via	the	use	of	an	AI	threshold	algorithm	instead	of	the	classic	functional	analysis	technique,	and
(2)	can	trivially	clean	the	systematic	noise	from	an	assay,	especially	useful	when	the	assay	contains
significant	inhibition.	Note	that	the	project	took	only	2	months,	even	though	I	had	zero	formal	background	in
microbiology	and	genetics.	I	received	intensive	mentoring	from	domain	experts.	I	saved	the	client's	project
from	bankruptcy.

11.	 Invented	a	network	protocol	for	hybrid	cable	modems	with	a	dialup	upstream	and	RF	downstream,	where
the	"edge	router"	controlled	access	to	both	the	dialup	and	RF	networks,	which	enabled	the	edge	router's	ARP
table	to	be	dynamically	modified	when	a	modem	logged	on	and	off.

12.	 Designed	a	super	efficient	cable	modem	network	laboratory	which	multiplied	by	a	factor	of	24	how	many
modems	could	be	attached	to	a	single	PC	via	multiplexing	with	a	dynamically	programmable	layer-2	switch.

13.	 Designed	a	GCC	port	for	Forth-like	CPUs	that	effectively	allowed	an	unlimited	number	of	registers.

14.	 Designed	Domain	Specific	Languages	(DSL)	for	Quality	Assurance	(QA)	projects	that	allowed	them	to	be
tested	with	scripts.	Examples	included	satellite	communications,	client	movie	players,	and	milspec	testing
laboratories.	The	scripts	exploited	flaws	in	the	satellite	software	design.	The	satellite	scripts	were	used	to
implement	sanity	tests	on	the	developer's	desktop	prior	to	code	check-in	which	significantly	reduced	QA
testing.	The	mil-spec	scripts	replaced	3+	meter	high	stack	of	test	docs,	and	allowed	the	system	engineer	to
write	simple	ad	hoc	tests.

15.	 Invented	a	DSL	for	a	VLSI	toolchain	that	clock-accurately	emulated	the	CPU	in	"C"	including	its	instruction
pipeline.	The	"C"	emulator	ran	100	times	faster	than	the	electrical	(e.g.	VERILOG)	simulator.	Therefore	the
DSL	enabled	instruction	set	sanity	tests	to	be	run	immediately	every	time	the	architecture	changed.	The	DSL
solved	one	of	the	most	painful	problems	in	designing	the	assembler	manually,	namely	detection	of	when	the
pipeline	was	broken	which	required	programmer	insertion	of	NOP	instructions.	For	many	months	the	VLSI
architects	changed	the	pipeline	restrictions	on	a	regular	basis.	Therefore	DSL	included	a	restriction
language.	It	allowed	the	assembler	to	be	built	within	2	hours	multiple	times	a	week.	The	DSL	was	expanded

https://www.srcml.org/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_for_real_time/7/html/reference_guide/chap-shared_libraries
https://www.avrahambernstein.com/cv/obfuscation/obfuscation.html
https://en.wikipedia.org/wiki/GIMP
https://en.wikipedia.org/wiki/Fuzzy_logic
https://en.wikipedia.org/wiki/Rooting_(Android)
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/QEMU
https://en.wikipedia.org/wiki/Cryptographic_nonce
https://www.w3schools.com/graphics/svg_intro.asp
https://www.youtube.com/watch?v=db0HzFTJtCs
https://www.youtube.com/watch?v=O3TiE1bkGOw
https://en.wikipedia.org/wiki/Forth_(programming_language)
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Very-large-scale_integration


to	include	a	disassembler.	Eventually	the	toolchain	formed	the	backbone	of	a	GUI	debugger.	The	debugger
incorporated	programmable	simulation	of	I/O	ports.	The	debugger	enabled	the	building	of	accurate
applications	many	months	before	the	physical	CPU	was	produced	(i.e.	"taped	out").

16.	 Invented	a	DSL	which	described	an	automated	sintered	metal	blade	production	factory	in	complete	detail.
At	that	time	commercial	quality	object	oriented	(OO)	languages	did	not	yet	exist.	But	the	factory	contained
about	50	object	classes,	e.g.	workstations,	stands,	pallets,	automatic	guided	vehicles,	stacks,	conveyors,
cranes,	etc.	Interrupt	routines	were	required	for	tool	sharpening	maintenance,	oiling	of	parts	that	stayed	too
long	in	storage,	etc.	The	DSL	included	a	scheduling	language.	We	designed	an	object	oriented	language	(in
Pascal)	which	completely	described	the	factory.	The	factory	was	operational	within	a	year.	The	factory
engineer	could	make	gross	changes	to	the	configuration	file,	while	clerks	had	individual	GUI	screens	to	make
spot	changes.	Originally	I	had	zero	knowledge	of	factory	design,	but	after	about	2	month	of	mentoring	from
an	industrial	engineer,	we	began	to	design	the	software.

17.	 Invented	an	application	for	quadriplegics	that	enabled	them	to	access	a	PC	with	a	CRT	screen	via	a
telescopically	extended	light	pen	(800	mm	vs	5	mm	distance)	and	via	a	sip-and-puff	accessibility	switch.	The
subject	wears	a	head	band	to	which	the	pen	was	attached.	Designed	a	virtual	screen	interface	which	only
popped	up	an	individual	virtual	key	when	the	pen	hovered	over	it,	leaving	95%	of	the	screen	still	visible.	The
first	user	was	a	quadriplegic	polio	victim	who	was	able	to	type	30	characters	per	minute,	and	became	a
financially	independent	book	editor.

18.	 Invented	many	small	CS	algorithms	over	the	years:	hardened	(minimized	collisions)	Adler-32	and	new	Adler-
64	checksum;	cryptographic	quality	key	wrapper	implemented	in	registers;	invertible	cross	Hamming
Weight	transformation;	cryptographic	quality	FFT	uniformly	distributed	Hamming	Weight-like	primitive;
binary	expandable	hash	table	(size	2^N)	that	can	grow	without	rehashing

3.	Work	Experience

2025:	Independent:	Founder	&	Principal	Engineer	Compiler	&	Obfuscation	Tools	Development.	Download
brochure.

2022-25:	Aurora	Labs,	Tel	Aviv:	Senior	Software	Architect	in	CTO	office	for	Digital	Automotive	Industry

2021:	Morphisec,	Beer	Sheva:	Senior	Software	Architect:	Anti-Reverse	Engineering	Modifications	to	Linux	x64
Libc	Kernel	implemented	with	the	help	of	the	Zydis	x64	disassembler

2021:	Qedit,	Tel	Aviv:	Consultant:	WASM	Cybersecurity	for	Financial	Industry

2017-20:	Argus	Cyber	Security	(now	PlaxidityX),	Tel	Aviv:	Senior	Researcher	for	Digital	Automotive	Industry

2013-17:	Viaccess-Orca	(subsidiary	of	Orange	FR),	Ra'anana:	Cybersecurity	Obfuscation	Manager	for	Internet	TV
industry

2017	part-time:	Independent:	Dyslexic	Accessibility

2015	part-time:	Canary	Mission,	Jerusalem:	Consultant:	Internet	Security	"Hygiene"

2013	part-time:	NVT,	US	(defunct):	CTO:	Agritech	Startup	for	Cassava	Production	in	Nigerian	Jungle

2012:	Telequest,	Jerusalem:	VP	R&D:	Automated	Vehicle	Navigation	To	Find	Optimal	Routes	in	City	Traffic

2011:	Syntezza	Bioscience,	Jerusalem:	Consultant:	Bioinformatic	algorithms

2005-10:	NDS	(now	Synamedia),	Jerusalem:	Senior	Cybersecurity	Researcher:	Internet	TV	Industry

2002-03:	Virtouch,	Jerusalem	(defunct):	VP	R&D:	Blind	Accessibility

1999-2004:	Vyyo,	Jerusalem	(defunct):	S/W	Group	Leader:	RF	wireless	cable	modem	industry

1998:	Fourfold,	Jerusalem	(defunct):	Software	architect:	modified	GCC	compiler	for	massively	parallel	CPU	for	a
Forth-like	CPU	with	unlimited	registers

1991-97:	Pitkha,	Jerusalem	(defunct):	CEO:	Domain	Specific	Language	(DSL)	Architect

1990-91:	Iscar-Matkash,	Tefen:	Software	Architect:	Factory	Automation

https://en.wikipedia.org/wiki/Sintering
https://en.wikipedia.org/wiki/Tetraplegia
https://en.wikipedia.org/wiki/Light_pen
https://en.wikipedia.org/wiki/Sip-and-puff
https://en.wikipedia.org/wiki/Adler-32
https://en.wikipedia.org/wiki/Hamming_weight
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://www.avrahambernstein.com/cv/BernsteinCybersecObfuscationRefactoringBrochure.docx
https://www.auroralabs.com/
https://www.morphisec.com/
https://zydis.re/
https://qed-it.com/
https://plaxidityx.com/
https://www.viaccess-orca.com/
https://canarymission.org/
https://en.wikipedia.org/wiki/Cassava
https://www.syntezza.com/
https://www.synamedia.com/
https://en.wikipedia.org/wiki/Forth_(programming_language)
https://www.iscar.com/index.aspx/countryid/1/lang/en


1988-89:	Cubital	(subsidiary	of	Scitex	),	Herzliya:

S/W	R&D:	Early	3D	printing	(stereo-lithography)
Inventor:	Quadriplegic	Accessiblity	for	PCs

...1983-84:	Elta	IAI,	Ashdod:	junior	embedded	programmer:	Lavi	fighter	plane

...1977:	Ontario	Energy	Board	(OEB),	Toronto

While	attending	the	MBA	program	at	the	Univ.	of	Toronto	(see	below),	I	was	an	intervenor	in	the	ECAP77
hearings	on	marginal	cost	pricing	for	electricity	at	Ontario	Hydro.	I	was	the	first	public	interest	intervenor
in	the	history	of	the	OEB	to	be	awared	costs.	I	published	an	oped	about	the	hearings	in	Canada's	then	paper
of	record	The	Globe	and	Mail.

4.	Education

1979:	York	University,	Toronto	Canada:	MA	Economics,	minor	in	Applied	Mathematics

1973-78:	University	of	Toronto,	Canada:	BA	Undergraduate	School	of	Arts	&	Sciences

I	did	graduate	studies	at	the	Rotman	Graduate	School	of	Management	(MBA	program)	and	Graduate	School
of	Engineering	where	credits	were	applied	to	my	MA	Economics	above.	After	the	Ontario	Energy	Board
(OEB)	hearings	immediately	above	in	1977,	I	switched	focus	to	engineering.	I	extraordinarily	passed	my
economic	compulsory	examinations	before	I	even	started	the	York	program,	so	the	school	allowed	to	me	to
take	graduate	level	courses	anywhere	I	chose.

5.	Teaching	&	Mentorship

Part-time	college	and	highschool	instructor	and	mentor	for	computer	science	and	mathematics.	Strong	advocate
of	pairing	with	domain	experts	to	accelerate	onboarding	and	innovation.

https://www.company-histories.com/Scitex-Corporation-Ltd-Company-History.html
https://www.iai.co.il/about/groups/elta-systems
https://en.wikipedia.org/wiki/IAI_Lavi
https://en.wikipedia.org/wiki/Ontario_Energy_Board
https://en.wikipedia.org/wiki/Intervention_(law)
https://en.wikipedia.org/wiki/Marginal_cost
https://www.hydroone.com/
https://www.theglobeandmail.com/
https://www.rotman.utoronto.ca/

