Avraham “Abe” Bernstein | CV

Email: Avraham DOT Bernstein PLUS cv AT gmail DOT com

Tel/Whatsapp: +972.54.641-0955

City: Jerusalem 9727433 ISRAEL

Time Zone: UTC +02:00/+03:00 (winter/summer)

Shabbat Observant: Not accessible electronically nor engaging in any business activities from Fri. evening (Jm.
time) beginning 1 hour before sunset until Sat. night 1 hour after sunset, nor on Jewish holidays

WWW: https.//www.avrahambernstein.com

Linkedin: https:/www.linkedin.com/in/avrahambernstein/

Last Update: 2025-02-08

1. Summary

I am a senior software architect with over 40+ years of INNOVATION in:

® compiler construction, and domain specific language (DSL) design
® design of command line interfaces (CLIs) and APIs
o for example that are extremely useful for scripting and testing GUIs, and for communicating with Al
agents
® automated source code refactoring of C-17, C++-2014, C#-ECMA334, and Java-SE8 S/W
o via the AST-XML conversion utilities srcML and Beautiful Soup
® unique source code obfuscation techniques that greatly reduce the reverse engineering "attack surface" of
linux apps (both workstation and embedded)
e simplify the design of source code with the assistance of various macro preprocessors and template engines
® algorithm design
e multiple patents and inventions in many different application domains

I worked at an expert level in many industries including:

cybersecurity
automotive
internet TV
accessibility
bioinformatics

I am an expert generalist and autodidact polymath who thrives on technically challenging projects. I worked
with CTO groups to solve problems that initially had AMBIGUOUS problem specifications in order to build
prototypes and minimum viable products (MVPs). I was able to refine the problems in order to build
commercially useful and testable solutions. I prefer to work with and to mentor small teams.

On account of my age, I find that working as a consultant-contractor is the best fit for most employers. And for

HR executives, here is a synopsis of a financial study from Stanford Univ. on the benefits of hiring older
employees.

Core Skills & Tools

e Languages: C, Python, Tcl, Jinja2, Pyexpander, Bash & Posix CLI Commands, HTML, XML, Markdown, WASM

¢ Technologies: srcML (acquired commercial license), Beautiful Soup, Linux, ELF, Misra C, GCC, Clang, Zydis,
Pandoc, Obsidian, YAML & PKL

® Domains: Compiler Design, Domain Specific Languages (DSL), Code Refactoring and Obfuscation (= anti-
reverse engineering), Cybersecurity, Reverse Engineering, Embedded Systems, Accessibility, Automotive

Software, Factory Automation, Bioinformatics, Network Protocols


https://www.timeanddate.com/worldclock/israel/jerusalem
https://www.chabad.org/calendar/candlelighting_cdo/locationId/247/locationType/1/jewish/Candle-Lighting.htm
https://www.hebcal.com/holidays/2026?i=on
https://www.avrahambernstein.com/
https://www.linkedin.com/in/avrahambernstein/
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://www.srcml.org/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://simplicable.com/new/expert-generalist
https://en.wikipedia.org/wiki/Autodidacticism
https://en.wikipedia.org/wiki/Polymath
https://longevity.stanford.edu/why-more-companies-are-recognizing-the-benefits-of-keeping-older-employees/
https://en.wikipedia.org/wiki/Jinja_(template_engine)
https://pyexpander.sourceforge.io/
https://en.wikipedia.org/wiki/List_of_POSIX_commands
https://webassembly.org/
https://www.srcml.org/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/MISRA_C
https://zydis.re/
https://www.pandoc.org/
https://obsidian-html.github.io/index.html
https://pkl-lang.org/
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Code_refactoring
https://en.wikipedia.org/wiki/Obfuscation_(software)

2.

1.

10.

11.

12.

13.

14.

15.

Inventions (Reverse Chronological Order)

Showed how srcML combined with Python Beautiful Soup could automatically refactor "C" source code for
greatly improving the efficiency of automotive software updates, and for cybersecurity obfuscation.

Invented Linux cybersecurity techniques, especially to minimize the attack surface of . so (DSO) files that
supply no formal exports, efficiently shroud system calls and strings and constants and randomize the stack,
and thus are extremely difficult to reverse engineer. See short technical description.

Patented FLASH techniques for implementing S/W updates on small FLASH devices, and small RAM for the
automobile industry which are plagued with minimal FLASH and RAM in order to reduce the materials cost
of the millions of vehicles that they produce.

Invented a technique for dynamically loading a large static FLASH database into an embedded system that
could be larger than RAM that does not violate any Misra C restrictions, with the help of preprocessing tools
such as Jinja2 or Pyexpander.

. Invented a simple technique to obfuscate photographs using GIMP filters while remaining easily

recognizable by a young child, but not recognizable by photographic database software.

Invented highly accurate fuzzy logic classifier used to discover rooted Android devices.

Showed how trivial Virtual Machine (VM) attacks could disrupt Digital Rights Management (DRM) protection,
and how the QEMU VM could disrupt the cryptographic nonce mechanism which allowed subscriber IDs to
be shared by a confederacy of pirates.

Invented a generic font modification technique in order to make them understandable by dyslexics.

Invented a technique that enabled the blind to "see" and navigate digital maps and to explore mathematical
functions on standard PCs and smartphones with a sound card and the addition of a consumer grade
graphics tablet via the use of custom S/W that runs on a standard web browser with SVG support.

Invented bioinformatic PCR algorithms that (1) can accurately detect the "Ct" of an assay with high levels of
inhibition via the use of an Al threshold algorithm instead of the classic functional analysis technique, and
(2) can trivially clean the systematic noise from an assay, especially useful when the assay contains
significant inhibition. Note that the project took only 2 months, even though I had zero formal background in
microbiology and genetics. I received intensive mentoring from domain experts. I saved the client's project
from bankruptcy.

Invented a network protocol for hybrid cable modems with a dialup upstream and RF downstream, where
the "edge router" controlled access to both the dialup and RF networks, which enabled the edge router's ARP
table to be dynamically modified when a modem logged on and off.

Designed a super efficient cable modem network laboratory which multiplied by a factor of 24 how many
modems could be attached to a single PC via multiplexing with a dynamically programmable layer-2 switch.

Designed a GCC port for Forth-like CPUs that effectively allowed an unlimited number of registers.

Designed Domain Specific Languages (DSL) for Quality Assurance (QA) projects that allowed them to be
tested with scripts. Examples included satellite communications, client movie players, and milspec testing
laboratories. The scripts exploited flaws in the satellite software design. The satellite scripts were used to
implement sanity tests on the developer's desktop prior to code check-in which significantly reduced QA
testing. The mil-spec scripts replaced 3+ meter high stack of test docs, and allowed the system engineer to
write simple ad hoc tests.

Invented a DSL for a VLSI toolchain that clock-accurately emulated the CPU in "C" including its instruction
pipeline. The "C" emulator ran 100 times faster than the electrical (e.g. VERILOG) simulator. Therefore the
DSL enabled instruction set sanity tests to be run immediately every time the architecture changed. The DSL
solved one of the most painful problems in designing the assembler manually, namely detection of when the
pipeline was broken which required programmer insertion of NOP instructions. For many months the VLSI
architects changed the pipeline restrictions on a regular basis. Therefore DSL included a restriction
language. It allowed the assembler to be built within 2 hours multiple times a week. The DSL was expanded


https://www.srcml.org/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_for_real_time/7/html/reference_guide/chap-shared_libraries
https://www.avrahambernstein.com/cv/obfuscation/obfuscation.html
https://en.wikipedia.org/wiki/GIMP
https://en.wikipedia.org/wiki/Fuzzy_logic
https://en.wikipedia.org/wiki/Rooting_(Android)
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/QEMU
https://en.wikipedia.org/wiki/Cryptographic_nonce
https://www.w3schools.com/graphics/svg_intro.asp
https://www.youtube.com/watch?v=db0HzFTJtCs
https://www.youtube.com/watch?v=O3TiE1bkGOw
https://en.wikipedia.org/wiki/Forth_(programming_language)
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Very-large-scale_integration

to include a disassembler. Eventually the toolchain formed the backbone of a GUI debugger. The debugger
incorporated programmable simulation of I/O ports. The debugger enabled the building of accurate
applications many months before the physical CPU was produced (i.e. "taped out").

16. Invented a DSL which described an automated sintered metal blade production factory in complete detail.
At that time commercial quality object oriented (OO) languages did not yet exist. But the factory contained
about 50 object classes, e.g. workstations, stands, pallets, automatic guided vehicles, stacks, conveyors,
cranes, etc. Interrupt routines were required for tool sharpening maintenance, oiling of parts that stayed too
long in storage, etc. The DSL included a scheduling language. We designed an object oriented language (in
Pascal) which completely described the factory. The factory was operational within a year. The factory
engineer could make gross changes to the configuration file, while clerks had individual GUI screens to make
spot changes. Originally I had zero knowledge of factory design, but after about 2 month of mentoring from
an industrial engineer, we began to design the software.

17. Invented an application for quadriplegics that enabled them to access a PC with a CRT screen via a
telescopically extended light pen (800 mm vs 5 mm distance) and via a sip-and-puff accessibility switch. The
subject wears a head band to which the pen was attached. Designed a virtual screen interface which only
popped up an individual virtual key when the pen hovered over it, leaving 95% of the screen still visible. The
first user was a quadriplegic polio victim who was able to type 30 characters per minute, and became a
financially independent book editor.

18. Invented many small CS algorithms over the years: hardened (minimized collisions) Adler-32 and new Adler-
64 checksum; cryptographic quality key wrapper implemented in registers; invertible cross Hamming
Weight transformation; cryptographic quality FET uniformly distributed Hamming Weight-like primitive;
binary expandable hash table (size 2~N) that can grow without rehashing

3. Work Experience

2025: Independent: Founder & Principal Engineer Compiler & Obfuscation Tools Development. Download
brochure.

2022-25: Aurora Labs, Tel Aviv: Senior Software Architect in CTO office for Digital Automotive Industry

2021: Morphisec, Beer Sheva: Senior Software Architect: Anti-Reverse Engineering Modifications to Linux x64
Libc Kernel implemented with the help of the Zydis x64 disassembler

2021: Qedit, Tel Aviv: Consultant: WASM Cybersecurity for Financial Industry
2017-20: Argus Cyber Security (now PlaxidityX), Tel Aviv: Senior Researcher for Digital Automotive Industry

2013-17: Viaccess-Orca (subsidiary of Orange FR), Ra'anana: Cybersecurity Obfuscation Manager for Internet TV
industry

2017 part-time: Independent: Dyslexic Accessibility

2015 part-time: Canary Mission, Jerusalem: Consultant: Internet Security "Hygiene"

2013 part-time: NVT, US (defunct): CTO: Agritech Startup for Cassava Production in Nigerian Jungle
2012: Telequest, Jerusalem: VP R&D: Automated Vehicle Navigation To Find Optimal Routes in City Traffic
2011: Syntezza Bioscience, Jerusalem: Consultant: Bioinformatic algorithms

2005-10: NDS (now Synamedia), Jerusalem: Senior Cybersecurity Researcher: Internet TV Industry
2002-03: Virtouch, Jerusalem (defunct): VP R&D: Blind Accessibility

1999-2004: Vyyo, Jerusalem (defunct): S/W Group Leader: RF wireless cable modem industry

1998: Fourfold, Jerusalem (defunct): Software architect: modified GCC compiler for massively parallel CPU for a
Forth-like CPU with unlimited registers

1991-97: Pitkha, Jerusalem (defunct): CEO: Domain Specific Language (DSL) Architect

1990-91: Iscar-Matkash, Tefen: Software Architect: Factory Automation



https://en.wikipedia.org/wiki/Sintering
https://en.wikipedia.org/wiki/Tetraplegia
https://en.wikipedia.org/wiki/Light_pen
https://en.wikipedia.org/wiki/Sip-and-puff
https://en.wikipedia.org/wiki/Adler-32
https://en.wikipedia.org/wiki/Hamming_weight
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://www.avrahambernstein.com/cv/BernsteinCybersecObfuscationRefactoringBrochure.docx
https://www.auroralabs.com/
https://www.morphisec.com/
https://zydis.re/
https://qed-it.com/
https://plaxidityx.com/
https://www.viaccess-orca.com/
https://canarymission.org/
https://en.wikipedia.org/wiki/Cassava
https://www.syntezza.com/
https://www.synamedia.com/
https://en.wikipedia.org/wiki/Forth_(programming_language)
https://www.iscar.com/index.aspx/countryid/1/lang/en

1988-89: Cubital (subsidiary of Scitex ), Herzliya:

e S/W R&D: Early 3D printing (stereo-lithography)
e Inventor: Quadriplegic Accessiblity for PCs

...1983-84: Elta IAl, Ashdod: junior embedded programmer: Lavi fighter plane
...1977: Ontario Energy Board (OEB), Toronto

e While attending the MBA program at the Univ. of Toronto (see below), I was an intervenor in the ECAP77
hearings on marginal cost pricing for electricity at Ontario Hydro. I was the first public interest intervenor
in the history of the OEB to be awared costs. I published an oped about the hearings in Canada's then paper
of record The Globe and Mail.

4. Education

1979: York University, Toronto Canada: MA Economics, minor in Applied Mathematics
1973-78: University of Toronto, Canada: BA Undergraduate School of Arts & Sciences

e 1did graduate studies at the a adua a am) and Graduate School
of Engineering where credits were apphed to my MA Economlcs above. After the Ontario Energy Board
(OEB) hearings immediately above in 1977, I switched focus to engineering. I extraordinarily passed my
economic compulsory examinations before I even started the York program, so the school allowed to me to
take graduate level courses anywhere I chose.

5. Teaching & Mentorship

Part-time college and highschool instructor and mentor for computer science and mathematics. Strong advocate
of pairing with domain experts to accelerate onboarding and innovation.


https://www.company-histories.com/Scitex-Corporation-Ltd-Company-History.html
https://www.iai.co.il/about/groups/elta-systems
https://en.wikipedia.org/wiki/IAI_Lavi
https://en.wikipedia.org/wiki/Ontario_Energy_Board
https://en.wikipedia.org/wiki/Intervention_(law)
https://en.wikipedia.org/wiki/Marginal_cost
https://www.hydroone.com/
https://www.theglobeandmail.com/
https://www.rotman.utoronto.ca/

